CHAPTER 1

INTRODUCTION

1.1. Background of Study

Currently, Indonesian traditional medicine in community is growing. Most of the Indonesian people are interested in treating the diseases they suffer from traditional medicine from various Indonesian plants (Kusuma *et al.*, 2016). One of them is Dayak onion (*Eleutherine americana* Merr.) Plants that are on this earth created by Allah SWT have several benefits that can be used for His creatures. As mentioned in the Qur'an Surah *Thaha* verse 53:

Means: "He who has made for you the earth like a carpet spread out, has enabled you to go about therein by roads and has sent down water from the sky. With it have, We produced diverse pairs of plants each separate from the others".

Allah SWT has created the rain and from which grow various kinds of plants. At *Lafadz* نَبَاتٍ شَتَّى has the meaning that plants created consist of various types, shapes, colors, flavors, and benefits. One of the various beneficial plants is Dayak onion (Galingging, 2009).

Dayak onion (*Eleutherine americana* Merr.) which has efficacy as antiacne (Syamsul *et al.*, 2015), antifungals (Diana *et al.*, 2014), antioxidants (Kuntorini *et al.*, 2016) anticancer, anti-inflammatory, antitumor, and prevent heart disease (Firdaus, 2014). The research conducted by Febrinda (2014) showed that onion extract had antioxidant compounds including triterpenoids, flavonoids, phenolics, alkaloid, and tannins.

Dayak onion is believed to contain various active compounds that are effective in treating various diseases (Kuntorini, 2013). The results of Firdaus's research (2014) proved that Dayak onion extract could inhibit *Staphylococcus aureus* bacteria. Dayak onion could also inhibit the growth of *Staphylococcus epidermis* and *Candida albicans* bacteria in vitro (Yuniarsih, 2018). Dayak onion extract with ethanol 96% solvent could inhibit the growth of *Escherichia coli* bacteria by using the disc diffusion method (Amanda, 2014). Furthermore, degenerative diseases (obesity, diabetes, coronary disease, and cancer) are currently increasing in prevalence, thus increasing people's desire for healthy living. Healthy living can be regulated by regulating diet and increasing people's demand for functional food (Suter, 2013).

Functional food is a food product comprising an active component that may provide health benefits and can be consumed without a certain dose (Astawan, 2011). The role of functional food for the body rests on the nutritional and non-nutritional components contained in it. These components are generally in the form of active components whose existence in food can occur naturally, due to the addition from outside, or processing (Suter, 2013). Bioactive components in functional food are responsible for ongoing metabolic reactions to health benefits (Subroto, 2008) such as carotenoids, dietary fiber, fatty acids, flavonoids, minerals, phenolic acids, and vitamins (Blasa *et al.*, 2010).

According to Marsono (2008), functional food products have high prospects including products that are lots of nutrition. Fisheries functional product development has also been carried out, for example the addition of seaweed for optimal texture the results of cork fish nugget (Masita, 2015), utilization of carrots as protein additions to cork fish nugget (Yulianti, 2018), and making catfish nugget with addition of mustard greens to improve nutrient quality (Cahya, 2018). Nuggets is mostly made from chicken, beef, and fish. The price of chicken and beef which is expensive raw material makes it impossible for everyone to enjoy it (Prastia *et al.*, 2016).

In 2013-2014 based on FAO data (2016), Indonesia was ranked 7th for aquaculture production in the world. When compared with the conditions for 2011-2012, Indonesia had a decline which previously Indonesia was in 4th position. According to Nurjannah (2015), Indonesia community had a low level of fish consumption. The low consumption of fish is inversely proportional to the region which is a lot of animal protein sources. Data from the Ministry of Maritime Affairs and Fisheries (MAF) stated that in the range of 2010-2014, fish consumption was always below the existing fish stocks. The average consumption rate was below 38 kilograms per capita, while the supply figure could range between 38 and 51 kilograms per capita (Maritime Affairs and Fisheries, 2017).

In East Java, Tulungagung Regency is the largest producer of catfish, which is 13,274.0 tons with a percentage of production of 31.35% (Data Center, Statistics and Information, 2013). Fish is a source of omega-3 which is very good for human health (Musbah et al., 2017). The protein and fat content in fish is beneficial especially for children's growth and development. Catfish is a type of fish that can be consumed by all age groups (Hendriana, 2010). Yuliastri & Suwandi (2015) explained that catfish had a fairly high protein content (17,7-26,7%) and fat (0,95-11,5%). The advantages of catfish compared to other animal products are lots of leucine and lysine which is needed for children's growth and development. Leucine is an essential amino acid that is very necessary for the reformation and formation of muscle proteins. Lysine is needed for tissues growth and repair (Arvianto, et al., 2016). The development research of catfish products into nugget products, especially functional nugget using Dayak onions has never been reported. This research is intended to analyze the effect of differences in concentration on flavonoid content, antioxidant activity, and organoleptic of catfish nugget by the addition of Dayak onions contained there in.

1.2. Formulation of the Problem

- a. What is the effect of Dayak onion extract (*Eleutherine americana* Merr.) addition on catfish nugget to flavonoid content?
- b. What is the effect of Dayak onion extract (*Eleutherine americana* Merr.) addition on catfish nugget to antioxidant activity?
- c. What is the effect of Dayak onion extract (*Eleutherine americana* Merr.) addition on catfish nugget to organoleptic proporties?

1.3. Objective of the Research

1.3.1. General Objective

The general objective of the research is to know the effect of Dayak onion extract (*Eleutherine americana* Merr.) addition on catfish nugget to flavonoid content, antioxidant activity, and organoleptic properties.

1.3.2. Spesific Objective

Specific objectives of the research are to:

- a. Know the effect of addition Dayak onion (*Eleutherine americana* Merr.) extract on catfish nugget to flavonoid content
- b. Know the effect of addition Dayak onion extract (*Eleutherine americana* Merr.) on catfish nugget to antioxidant activity
- c. Know the effect of addition Dayak onion (*Eleutherine americana* Merr.) extract on catfish nugget to organoleptic properties

1.4. Benefits of Research

1.4.1. Theoretical Benefit

Theoritical benefit of te research are to:

- a. Provide information about the health benefits of adding Dayak
 Onions in making catfish nugget.
- b. Provide scientific information on food technology.
- c. Implement and utilize the knowledge gained during education.

1.4.2. Practical Benefit

Practical benefit of the research are to:

- a. Increase knowledge about the development of research into the addition of Dayak onion extract to catfish nugget.
- b. Reference material for practitioners interested in food technology.

1.5. Previous Research

Several studies have been conducted by Cahya (2018) on Diversifying Fish Nugget Using Catfish and Adding Green Mustard (*Brassica rapa Var. Parachinensis*). However, research on the effect of addition Dayak onion extract (*Eleutherine americana* Merr.) of catfish nugget to flavonoid content, antioxidant activity, and organoleptic has never been reported. The difference in this research with previous research regarding the manufacture of the fish nugget is in table 1.

Table 1. Authenticity of the research

Researcher	Title	Result and Method	Differences
Fahma Dwi	Diversification	There was a different	The analysis
Cahya (2018)	of Fish Nugget	effect of the addition of	conducted by Fahma's
	Using Catfish	green mustard on African	research is the hedonic
	and Addition of	catfish nuggets to the	test and hedonic
	Green Mustard	hedonic test and hedonic	quality test
	(Brassica	quality test	
	Rapa Var.	Methode: experimental	In this study, the effect
	Parachinensis).	method with Completely	Dayak onion extract
		Randomized Design	of catfish nugget to
		(CRD)	flavonoid content and
			antioxidant activity
			and organoleptic
			properties.

Researcher	Title	Result and Method	Differences
Viqi Sajidah	Effect of	There was no difference	The analysis carried
(2018)	Addition	in the total levels of	out was the addition
	of Dayak	flavonoids in tempeh	of Dayak Onion
	Onion Extract	nuggets with the addition	Extract (Eleutherine
	(Eleutherine	of Dayak onion extract	americana Merr.)
	americana	and differences in anti-	To Flavonoids and
	Merr.) On	oxidant activity on tempe	Antioxidant Activities
	Flavonoids and	nuggets with the addition	on Tempe Nuget
	Antioxidant	of Dayak onion extract.	
	Activities and	Methode: experimental	In this study, the effect
	Tempe Nuget	method with Completely	of Dayak onion extract
		Randomized Design	on catfish nugget on
		(CRD)	flavonoid, antioxidant
			and organoleptic
			properties.
Widya Areta	Increased	The substitution of catfish	Analysis carried
Humaniora	Acceptability	and red beans has an	out by substitution
Jutisia dan	and Protein	effect on the acceptability	nuggets of catfish
Anni Catur Adi	Nugget Levels	of nuggets with the	(Clarias batrachus)
(2016)	Substitution of	best composition is the	and red beans (Vigna
	Catfish (Clarias	formula of nuggets catfish	angularis) can
	batrachus)	is 88 g, red beans 65 g,	increase acceptability
	and Red	and 10 tapioca flour g.	and protein content in
	Beans (Vigna	Methode: experimental	nuggets
	angularis)	method with Completely	
		Randomized Design	In this study, the effect
		(CRD)	of Dayak onion extract
			on catfish nugget on
			flavonoid, antioxidant
			and organoleptic
			properties.

Researcher	Title	Result and Method	Differences
A Ismanto, D	Effect of	Addition of Tiwai onion	Effect of addition
Arsanto, dan	Addition of	extract (Eleutherine	of Tiwai onion
Suhardi (2014)	Tiwai Onion	americana Merr) could	extract (Eleutherine
	Extract	increase water content, fat	americana Merr) on
	(Eleutherine	content, ash content, and	chemical composition,
	americana	vitamin C but reduce the	physical quality,
	Merr) on	quality of organoleptic	organoleptic and
	Chemical	colors and does not	vitamin c arab chicken
	Composition,	affect the acceptability of	nuggets (Gallus
	Physical Quality,	chicken nuggets.	turcicus)
	Organoleptic	Methode: experimental	
	and Vitamin C	method with Completely	In this study, the effect
	Arab Chicken	Randomized Design	of Dayak onion extract
	Nuggets (Gallus	(CRD)	on catfish nugget on
	turcicus)		flavonoid, antioxidant
			and organoleptic
			properties.