Search for collections on UNIDA Gontor Repository

LIGHTWEIGHT CNN FOR NASKHI AND RIQ’AH KHAT CLASSIFICATION

Riza, Muhamad Taufiq (2023) LIGHTWEIGHT CNN FOR NASKHI AND RIQ’AH KHAT CLASSIFICATION. S1 Undergraduate thesis, Universitas Darussalam Gontor.

[img] FILE TEXT (COVER)
1. COVER + HALAMAN AWAL.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB)
[img] FILE TEXT (ABSTRAK)
2. ABSTRAK.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (365kB)
[img] FILE TEXT (DAFTAR ISI)
3. DAFTAR ISI.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (340kB)
[img] FILE TEXT (BAB 1)
4. BAB 1.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (365kB)
[img] FILE TEXT (BAB 2)
5. BAB 2.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (631kB) | 📑 Request Acces File
[img] FILE TEXT (BAB 3)
6. BAB 3.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (573kB) | 📑 Request Acces File
[img] FILE TEXT (BAB 4)
7. BAB 4.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (439kB) | 📑 Request Acces File
[img] FILE TEXT (BAB 5)
8. BAB 5.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (297kB) | 📑 Request Acces File
[img] FILE TEXT (DAFTAR PUSTAKA)
9. DAFTAR PUSTAKA.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (341kB) | 📑 Request Acces File

Abstract

The Arabic script has various types of khat that are complex and different from one another, thus requiring an appropriate classification to identify the type of khat used. This study uses the Lightweight Convolutional Neural Network (CNN) classification method to identify the types of khat Naskhi and Riq’ah in the Arabic script dataset. The evaluation results show that this classification model has an accuracy of 98.75% on training data and 100% on validation data, with a relatively fast processing time of 2s 375ms/step faster than the previous study with an accuracy of 91.87% and an average processing time of 3s 465ms/step. so that the model can be implemented properly in systems that require high data processing speed and also devices that have resource limitations. These results indicate that the classification model using the Lightweight CNN layer can be used as an effective alternative in classifying types of Arabic writing, especially in recognizing certain types of khat such as Naskhi and Riq’ah. Furthermore, this research can be developed using a larger and more diverse dataset, and evaluated and compared with other classification models to improve the model’s performance in recognizing more complex types of Arabic writing.

Item Type: Thesis ( S1 Undergraduate )
Additional Information: Skripsi : Muhamad Taufiq Riza NIM : 402019611021
Uncontrolled Keywords: Lightweight CNN, classification, khat naskhi, khat riq’ah, Arabic script.
Subjects: Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 003 - Sistem-sistem
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 003 - Sistem-sistem

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
Divisions: Fakultas Sains dan Teknologi UNIDA Gontor > Teknik Informatika
Depositing User: 44 Muhamad Taufiq Riza
Date Deposited: 19 Sep 2024 16:39
Last Modified: 29 Sep 2024 06:12
URI: http://repo.unida.gontor.ac.id/id/eprint/3326

Statistics Downloads of this Document

Downloads per month in the last year

View more statistics

 View Item View Item