Search for collections on UNIDA Gontor Repository

ANALYSIS OF BEST-SELLING PRODUCT SALES AT PEKANBARU JAYA BUILDING STORE USING THE K-MEANS CLUSTERING METHOD

Rahma, Fifid (2025) ANALYSIS OF BEST-SELLING PRODUCT SALES AT PEKANBARU JAYA BUILDING STORE USING THE K-MEANS CLUSTERING METHOD. S1 Undergraduate thesis, Universitas Darussalam Gontor.

[img] FILE TEXT (COVER + HALAMAN AWAL)
COVER + HALAMAN AWAL.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (891kB)
[img] FILE TEXT (ABSTRAK)
Abstrak.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (449kB)
[img] FILE TEXT (DAFTAR ISI)
Daftar Isi.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (414kB)
[img] FILE TEXT (BAB 1)
Bab 1.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (550kB)
[img] FILE TEXT (BAB 2)
Bab 2.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (545kB)
[img] FILE TEXT (BAB 3)
Bab 3.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (524kB)
[img] FILE TEXT (BAB 4)
Bab 4.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (821kB)
[img] FILE TEXT (BAB 5)
Bab 5.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (372kB)
[img] FILE TEXT (DAFTAR PUSTAKA)
Daftar Pustaka.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (436kB)

Abstract

Pekanbaru Jaya Building Store faces difficulties in identifying the products that customers are most interested in, so it hampers the efficiency of stock management and sales strategies. This research aims to assist the store in determining the best-selling products by analyzing sales data for the last two years using the K-Means Clustering method. The analysis was conducted based on several parameters, namely quantity and total sales. The clustering analysis using the Silhouette Score yielded the highest value of 0.73 with four clusters. Each cluster provides insight into the grouping of products based on their sales levels, which can be utilized to optimize a store's stock management and marketing strategies.

Item Type: Thesis ( S1 Undergraduate )
Additional Information: Skripsi : Fifid Rahma Ifalus NIM422021618025
Uncontrolled Keywords: building store, clustering, k-means, silhoutte score
Subjects: Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
Divisions: Fakultas Sains dan Teknologi UNIDA Gontor > Teknik Informatika
Depositing User: 2021 Fifid Rahma
Date Deposited: 14 Feb 2025 10:40
Last Modified: 14 Feb 2025 10:40
URI: http://repo.unida.gontor.ac.id/id/eprint/5413

Statistics Downloads of this Document

Downloads per month in the last year

View more statistics

 View Item View Item