Search for collections on UNIDA Gontor Repository

BODY SHAMING SENTIMENT ANALYSIS USING SUPPORT VECTOR MACHINE ALGORITHM ON SOCIAL MEDIA

MI'ROJ, LAILY FADLILATUL (2025) BODY SHAMING SENTIMENT ANALYSIS USING SUPPORT VECTOR MACHINE ALGORITHM ON SOCIAL MEDIA. S1 Undergraduate thesis, Universitas Darussalam Gontor.

[img] FILE TEXT (cover)
1. COVER.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (751kB)
[img] FILE TEXT (ABSTRAK)
2. ABSTRAK.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (392kB)
[img] FILE TEXT (DAFTAR ISI)
3. DAFTAR ISI.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (411kB)
[img] FILE TEXT (BAB 1)
4. BAB 1.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (596kB)
[img] FILE TEXT (BAB 2)
5. BAB 2.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (867kB)
[img] FILE TEXT (BAB 3)
6. BAB 3.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (831kB)
[img] FILE TEXT (BAB 4)
7. BAB4.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (580kB)
[img] FILE TEXT (BAB 5)
8.BAB 5.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (388kB)
[img] FILE TEXT (DAFTAR PUSTAKA)
9. DAFTARPUSTAKA.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (623kB)

Abstract

Social media is rapidly growing in Indonesia, replacing the role of conventional media in information dissemination. Indonesia ranks fifth in the world for the number of Twitter users. Twitter serves as a primary platform for users to express ideas, opinions, and criticism, but it also has negative impacts, one of which is body shaming. Body shaming is the act of making negative comments about a person's physique, such as "fat", "pug" or "cungkring", which often occurs on social media platforms, including Twitter. This study aims to analyze people's sentiments toward body shaming on Twitter using the Support Vector Machine (SVM) method. Datasets were collected through Twitter crawling techniques and then classified into positive, neutral, and negative sentiments. The confusion matrix evaluated the model, resulting in 66% accuracy, 69% precision, 66% recall, and 65% F1 score. The sentiment distribution shows that the positive class dominates with 1975 data (40.5%), followed by the neutral class with 1829 data (37.5%), and the negative class with 1071 data (22%). The results show that the SVM method is quite effective in classifying body shaming sentiment on Twitter. These findings can provide insights for developing sentiment detection algorithms and content moderation policies in social media.

Item Type: Thesis ( S1 Undergraduate )
Additional Information: SKRIPSI LAILY FADLILATUL MI'ROJ NIM 412020618025
Uncontrolled Keywords: BODY SHAMING, TWITTER, SUPPORT VECTOR MACHINE
Subjects: Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 006 - Metode komputer khusus
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 006 - Metode komputer khusus
Divisions: Fakultas Sains dan Teknologi UNIDA Gontor > Teknik Informatika
Depositing User: 2020 Laily Fadlilatul Mi'roj
Date Deposited: 16 Feb 2025 04:49
Last Modified: 16 Feb 2025 04:49
URI: http://repo.unida.gontor.ac.id/id/eprint/5447

Statistics Downloads of this Document

Loading...
Downloads per month in the last year

View more statistics

 View Item View Item