Thesis
Published
IMPLEMENTATION OF THE K-MEANS ALGORITHM FOR CLUSTERING CRIMINAL CASES IN THE DEPOK CITY AREA
Abstract
Criminal acts are prohibited, strictly enforced, and subject to legal penalties in every
country to ensure the protection of society. According to data from the Indonesian
National Police (Polri) published on the Data Indonesia portal, a total of 288,472
criminal incidents occurred in Indonesia throughout 2023, reflecting a 4.33%
increase compared to the previous year’s 276,507 cases. Notably, records from
Polda Metro Jaya, which includes the city of Depok, indicate a 32% rise in crime
rates in 2023 compared to 2022. The primary objective of this study is to categorise
crime levels within Depok City using the K-Means clustering algorithm, based on
crime report data obtained from the Metro Depok Police Resort. The classification
is structured into three categories: high risk, moderate risk, and low risk. The dataset
employed in this study comprises information on five major crime types, namely:
aggravated assault (Anirat), aggravated theft (Curat), violent theft (Curas), motor
vehicle theft (Curanmor), and extortion/threats (Peras/Anc). These crimes exhibited
the highest occurrence rates across different precincts within Depok City in 2023
and were subsequently clustered using the K-Means algorithm. The research
methodology follows the Cross-Industry Standard Process for Data Mining (CRISP
DM), which consists of six stages: business understanding, data understanding, data
preparation, modelling, evaluation, and deployment. Based on the evaluation of the
clustering results, the optimal number of clusters was determined to be three, with a
Silhouette Score of 0.5891 or 58,9 %.
Publication Details
InstitutionUniversitas Darussalam Gontor
DepartmentInformatics Engineering
SubjectsDewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 001 - Ilmu pengetahuan
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 001 - Ilmu pengetahuan
Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer
Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
K Law > K Law (General)
T Technology > T Technology (General)
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 001 - Ilmu pengetahuan
Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer
Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
K Law > K Law (General)
T Technology > T Technology (General)
KeywordsK-Means, clustering, criminality, Depok City, CRISP-DM, crime
prevention.
Item ID5407
Deposited13 Feb 2025 15:07