Search for collections on UNIDA Gontor Repository

APPLICATION OF THE NAÏVE BAYES METHOD IN AN EXPERT SYSTEM FOR PREDICTING SUGARCANE PLANT DISEASES

Izzati, Fildzah Zata (2025) APPLICATION OF THE NAÏVE BAYES METHOD IN AN EXPERT SYSTEM FOR PREDICTING SUGARCANE PLANT DISEASES. S1 Undergraduate thesis, Universitas Darussalam Gontor.

[img] FILE TEXT (COVER)
COVER.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (489kB)
[img] FILE TEXT (ABSTRAK)
ABSTRAK.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (360kB)
[img] FILE TEXT (DAFTAR ISI)
DAFTAR ISI.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (379kB)
[img] FILE TEXT (BAB I)
BAB I.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (441kB)
[img] FILE TEXT (BAB II)
BAB II.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (476kB)
[img] FILE TEXT (BAB III)
BAB III.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (917kB)
[img] FILE TEXT (BAB IV)
BAB IV.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB)
[img] FILE TEXT (BAB V)
BAB V.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (338kB)
[img] FILE TEXT (DAFTAR PUSTAKA)
DAFTAR PUSTAKA.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (395kB)

Abstract

Sugarcane (Saccharum officinarum L) is an industrial crop with high economic value due to its glucose-rich stalks, making it widely cultivated for sugar production. However, in recent years, sugar production has declined while sugar consumption continues to rise. One of the factors affecting the quality and production of sugarcane is disease, which has caused significant losses for both farmers and the sugar processing industry. This study develops an expert system for identifying sugarcane diseases using the Naïve Bayes method to address this issue. The aim of this research is to detect disease types based on observed symptoms and provide information on possible solutions using an expert system. The Naïve Bayes method was chosen for its ability to process data independently and efficiently. Based on testing with 15 test datasets, the expert system achieved an accuracy rate of 87%, demonstrating its reliable performance. Functional testing using the Black Box method showed a system success rate of 100%. This Naïve Bayes-based expert system is expected to be an effective solution for improving the efficiency of sugarcane disease identification, reducing losses caused by diseases, and supporting increased sugar production in the future.

Item Type: Thesis ( S1 Undergraduate )
Additional Information: Skripsi : Fildzah Zata Izzati NIM : 422021618027
Uncontrolled Keywords: Sugarcane, Expert System, Naïve Bayes
Subjects: Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 003 - Sistem-sistem
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 003 - Sistem-sistem

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
Divisions: Fakultas Sains dan Teknologi UNIDA Gontor > Teknik Informatika
Depositing User: 2021 Fildzah Zata Izzati
Date Deposited: 15 Feb 2025 02:10
Last Modified: 15 Feb 2025 02:10
URI: http://repo.unida.gontor.ac.id/id/eprint/5427

Statistics Downloads of this Document

Downloads per month in the last year

View more statistics

 View Item View Item