Search for collections on UNIDA Gontor Repository

COMPARISON OF NAIVE BAYES AND KOLMOGOROV-ARNOLD NETWORKS (KANs) METHODS IN THE CLASSIFYING OF OBESITY LIKELIHOOD LEVELS

Azahra, Renaya Aviary (2025) COMPARISON OF NAIVE BAYES AND KOLMOGOROV-ARNOLD NETWORKS (KANs) METHODS IN THE CLASSIFYING OF OBESITY LIKELIHOOD LEVELS. S1 Undergraduate thesis, Universitas Darussalam Gontor.

[img] FILE TEXT (Cover)
cover+halaman awal.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (629kB)
[img] FILE TEXT (Abstrak)
abstrak.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (378kB)
[img] FILE TEXT (Daftar Isi)
daftar isi.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (390kB)
[img] FILE TEXT (Bab 1)
bab 1.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (569kB)
[img] FILE TEXT (Bab 2)
bab 2.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (561kB)
[img] FILE TEXT (Bab 3)
bab 3.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (560kB)
[img] FILE TEXT (Bab 4)
bab 4.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (503kB)
[img] FILE TEXT (Bab 5)
bab 5.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (372kB)
[img] FILE TEXT (Daftar Pustaka)
daftar pustaka.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (432kB)

Abstract

Obesity is one of the world’s most serious health problems, and its prevalence is increasing every year. Several other health problems occur after someone is obese. Predicting the possibility of obesity by detecting it as early as possible is a very important step in reducing the risk of related health complications. Obesity can be detected immediately by looking at several factors that trigger obesity. Some of these factors are height, weight, and body mass index. These three factors are the primary triggers for obesity. This study examines the performance of two classification methods, Naïve Bayes and Kolmogorov-Arnold Networks(KANs). The analysis was performed by comparing the accuracy of each method. The data is processed by cleaning, testing, and evaluation. The results show that the Naïve Bayes method is superior to Kolmogorov-Arnold Networks. Namely 96% for Naïve Bayes and 71% for Kolmogorov-Arnold Networks. This indicates that Naïve Bayes is more effective on the data examined. Naïve Bayes is a reasonably practical probability theory even though it uses simple data. On the other hand, Kolmogorov-Arnold Networks shows limitations in the data set because it requires complex data, characterized by many variables and a more significant amount of data.

Item Type: Thesis ( S1 Undergraduate )
Additional Information: Skripsi Renaya Aviary Azahra 422021618053
Uncontrolled Keywords: Obesity, Naive Bayes, Kolmogorov Arnold Networks
Subjects: Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
Divisions: Fakultas Sains dan Teknologi UNIDA Gontor > Teknik Informatika
Depositing User: 2021 Renaya Aviary Azahra
Date Deposited: 15 Feb 2025 03:03
Last Modified: 15 Feb 2025 03:03
URI: http://repo.unida.gontor.ac.id/id/eprint/5429

Statistics Downloads of this Document

Downloads per month in the last year

View more statistics

 View Item View Item