Search for collections on UNIDA Gontor Repository

ANALYSIS OF FAKE NEWS DURING THE 2024 INDONESIAN PRESIDENTIAL ELECTION USING K-NEAREST NEIGHBOR(KNN)

Hikam, Arief Fathul (2025) ANALYSIS OF FAKE NEWS DURING THE 2024 INDONESIAN PRESIDENTIAL ELECTION USING K-NEAREST NEIGHBOR(KNN). S1 Undergraduate thesis, Universitas Darussalam Gontor.

[img] FILE TEXT (COVER)
COVER.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (437kB)
[img] FILE TEXT (ABSTRAK)
ABSTRAK.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (236kB)
[img] FILE TEXT (DAFTAR ISI)
DAFTAR ISI.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (277kB)
[img] FILE TEXT (BAB 1)
BAB 1.pdf - Submitted Version
License Creative Commons Attribution Non-commercial No Derivatives.

Download (278kB)
[img] FILE TEXT (BAB 2)
BAB 2.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (280kB)
[img] FILE TEXT (BAB 3)
BAB 3.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (538kB)
[img] FILE TEXT (BAB 4)
BAB 4.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (288kB)
[img] FILE TEXT (BAB 5)
BAB 5.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (234kB)
[img] FILE TEXT (DAFTAR PUSTAKA)
DAFTAR PUSTAKA.pdf - Submitted Version
Exclusive to Registered users only
License Creative Commons Attribution Non-commercial No Derivatives.

Download (302kB)

Abstract

The 2024 Presidential General Election will be a crucial moment in Indonesian democracy. However, the spread of fake news (hoaxes) is increasingly widespread and has a negative impact on public opinion and a healthy election process. This research aims to develop a fake news classification system using the K-nearest neighbor (KNN) method. The data used comes from the Turn Back Hoax site by MAFINDO (Indonesian Anti-Defamation Society) which provides verified news sources that are correct and have labeled false news circulating in the community. The classification process involves data pre-processing stages, such as tokenization, removal of meaningless words (stopwords). ), and originate. Next, data features are extracted using the TF-IDF method to improve classification quality. Based on the tests carried out, the KNN model managed to achieve an accuracy of 97%, which shows the effectiveness of this method in detecting fake news. The results of this research can provide practical solutions to mitigate the spread of hoaxes, especially in the election context, and encourage more informed voter participation.

Item Type: Thesis ( S1 Undergraduate )
Additional Information: Skripsi : Arief Fathul Hikam NIM : 3920186110290
Uncontrolled Keywords: Classification, Fake news, election, K-Nearest Neighbor
Subjects: Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 000 - Ilmu komputer, informasi dan pekerjaan umum

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 004 - Pemrosesan data dan ilmu komputer

Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
23rd Dewey Decimal Classification > 000 - Komputer, Informasi dan Referensi Umum > 000 - Ilmu komputer, informasi dan pekerjaan umum > 005 - Pemrograman komputer, program dan data
Divisions: Fakultas Sains dan Teknologi UNIDA Gontor > Teknik Informatika
Depositing User: 2018 Arief Fathul Hikam
Date Deposited: 09 Mar 2025 14:40
Last Modified: 09 Mar 2025 14:40
URI: http://repo.unida.gontor.ac.id/id/eprint/6878

Statistics Downloads of this Document

Loading...
Downloads per month in the last year

View more statistics

 View Item View Item